## WORKSHOP ON THE IMPLEMENTATION OF COMPLEX ENGINEERING PROBLEM SOLVING (WP) AND COMPLEX ENGINEERING ACTIVITIES (EA)

Board of Accreditation for Engineering and Technical Education, Institution of Engineers Bangladesh, 18-19 June 2019

#### SITI HAWA HAMZAH

PhD, P. Eng, FIEM, Hon MAFEO ASEAN Engr, MRM, PSWM ASSOCIATE DIRECTOR (CIVIL ENGINEERING) BEM sitihawabthamzah@gmail.com

#### LIEW CHIA PAO

P. Eng, MIEM ASSOCIATE DIRECTOR (ELECTRONIC ENGINEERING) BEM PRINCIPAL LECTURER, TUNKU ABDUL RAHMAN UNIVERSITY COLLEGE, MALAYSIA liewcp@tarc.edu.my

| Time          | Workshop Schedule                                                                     |
|---------------|---------------------------------------------------------------------------------------|
| 9:30 – 9:45   | Introduction and Outcomes of the Workshop                                             |
| 9:45 – 10:45  | Overview of Graduate Attributes and Knowledge Profile                                 |
| 10:45 – 11:00 | Tea Break                                                                             |
| 11:00 – 12:00 | Group Discussion                                                                      |
| 12:00 – 13:00 | Overview of Complex Engineering Problem Solving and Complex<br>Engineering Activities |
| 13:00 – 14:00 | Lunch                                                                                 |
| 14:00 – 15:30 | Group Discussion                                                                      |
| 15:30 – 15:45 | Break                                                                                 |
| 15:45 – 16:45 | Group Presentation                                                                    |
| 16:45 - 17:00 | Closure and Reflection                                                                |

3

At the end of the presentation, participants are able to; 1. Have the insight into the requirements of WP and EA defined by the IEA; 2. Map the courses of a programme to fulfil the requirements of WA defined by the IEA; and 3. Design a course/courses that address WP and EA. 4. Contribute to CQI process in the effort of improving learning process and achievement of the learning outcomes of the students





International agreements GOVERN the recognition of engineering educational qualifications and professional competence, thus establishing and enforcing internationally bench-marked standards.

Defining standards of education and professional competence. (http://www.ieagreements.org/) Version 1: June 2005 Version 2: June 2009 VERSION 3: JUNE 2013

EDUCATION ACCORDS

- WA (20 MEMBER COUNTRIES) 1989
- SA (11 MEMBER COUNTRIES) 2001
- DA (9 MEMBER COUNTRIES) 2002

## AGREEMENTS

- APEC
- IPEA
- IETA
- AIET

## WA

Signed in 1989, the Washington Accord, is a multi-lateral agreement between bodies responsible for accreditation or recognition of tertiarylevel engineering qualifications within their jurisdictions who have chosen to work collectively to assist the mobility of professional engineers.

The Washington Accord is specifically focused on academic programmes which deal with the practice of engineering at the professional level.

#### The Sydney Accord is specifically focused on academic programmes dealing with engineering technology.

SΔ

• The Accord acknowledges that accreditation of these academic programmes is a key foundation for the practice of engineering technology in each of the countries or territories covered by the Accord.

• It recognises the importance of the roles engineering technologists as part of a wider engineering team.

- The Dublin Accord is specifically focused on the mutual recognition of academic programmes/ qualifications that underpin the educational base for Engineering Technicians.
- The Accord acknowledges that the educational base is a key foundation for practice as an engineering technician, in each of the countries or territories covered by the Accord.
- It recognises the importance of the roles engineering technicians play as part of a wider engineering team.



4. Chinese Taipei - (IEET) (2007) 5. Hong Kong China - (HKIE) (1995) 6. India - (NBA) (2014) Count 7. Ireland - (EI) (1989) 8. Japan - (JABEE) (2005) 9. Korea - (ABEEK) (2007) 10. Malaysia - (BEM) (2009) 11. New Zealand - (IPENZ) (1989) 12. Russia - (AEER) (2012) ember 13. Singapore - (IES) (2006) 14. South Africa - (ECSA) (1999) 15. Sri Lanka - (IESL) (2014) 16. Turkey - (MÜDEK) (2011) 17. United States - (ABET) (1989) 18. United Kingdom - (ECUK) (1989) 19. Pakistan - (PEC) (2017) 20. Peru – (ICACIT) (2018)

- **PROVISIONAL MEMBERS** 1. Bangladesh - (IEB) Costa Rica - (CFIA)
- 3. Mexico (CACEI)
- Philippines (PTC)
- Chile (ACREDITA CI)

Australia - (EA) (1989)

Canada – (EC) (1989) China - (CAST) (2016)

## **SA Member** Countries

- 1. Australia (EA) (2001)
- 2. Canada (CCTT) (2001)
- 3. Chinese Taipei (IEET) (2014)
- 4. Hong Kong China (HKIE) (2001)
- 5. Ireland (EI) (2001)
- 6. Korea (ABEEK) (2013)
- 7. New Zealand (IPENZ) (2001)
- 8. South Africa (ECSA) (2001)
- United Kingdom (ECUK) (2001)
- 10. United States (ABET) (2009)

11. MALAYSIA – (BEM) (2018)

#### **PROVISIONAL MEMBERS**

- 1. Peru (ICACIT)
- 2. Sri Lanka (IESL)

## **DA Member** Countries

- 1. Australia (EA) (2013)
- 2. Canada (CCTT) (2002)
- 3. Ireland (EI) (2002)
- 4. New Zealand (IPENZ) (2013)
- 5. Korea (ABEEK) (2013)
- 6. South Africa (ECSA) (2002)
- 7. United Kingdom (ECUK) (2002)
- 8. United States (ABET) (2013)
- 9. MALAYSIA (BEM) (2018)

#### **PROVISIONAL MEMBERS**

NONE to date

## IPEA MEMBERS

999

(1997)

(2007)

(2007)



## IETA MEMBERS

- Canada Canadian Council of Technicians and Technologists (CCTT) (2001)
- 2. Hong Kong China Hong Kong Institution of Engineers
- 3. Ireland Engineers Ireland (EI) (2001)
- 4. New Zealand Engineering New Zealand (EngNZ) (2001)
- 5. South Africa Engineering Council South Africa (ECSA)
- 6. United Kingdom Engineering Council United Kingdom
- 7. Australia Engineers Australia (EA) (2018)

## **AIET MEMBERS**

- 1. Australia Engineers Australia (EA) (2016)
- 2. Canada Canadian Council of Technicians and
  - Technologists (CCTT) (2016)
- 3. Ireland Engineers Ireland (EI) (2016)
- 4. New Zealand Engineering New Zealand (EngNZ) (2016)
- 5. South Africa Engineering Council South Africa (ECSA)
- 6. United Kingdom Engineering Council United Kingdom

## **APEC ENGINEER** MEMBER ECONOMIES

| 1. Australia - Engineers Australia (EA) (2000) |
|------------------------------------------------|
| 2. Canada - Engineers Canada (EC) (2000)       |
| 3. Chinese Taipei - Chinese Institute of       |
| Engineers (CIE) (2005)                         |
| 4. Hong Kong China - Hong Kong Institution     |
| of Engineers (HKIE) (2000)                     |
| 5. Indonesia – Persatuan Insinyur Indonesia    |
| (PII) (2001)                                   |
| 6. Japan - Institution of Professional         |
| Engineers Japan (IPEJ) (2000)                  |
| 7. Korea - Korean Professional Engineers       |
| Association (KPEA) (2000)                      |
| 8. Malaysia - Institution of Engineers         |
| Malaysia (IEM) (2000)                          |
| 9. New Zealand - Engineering New Zealand       |
| (EngNZ) (2000)                                 |
| 10.Philippines - Philippine Technological      |
| Council (PTC) (2003)                           |
| 11.Russia – Association for Engineering        |
| Education of Russia (AEER) (2010)              |
| 12.Singapore - Institution of Engineers        |
| Singapore (IES) (2005)                         |
| 13.Thailand – Council of Engineers Thailand    |
| (COE) (2003)                                   |
| 14.United States – National Council of         |
| Examiners for Engineering and Surveying        |
| (NCEES) (2001)                                 |
| 15.Peru – Peruvian Engineers Association       |
| (PEA/CIP) (2018)                               |

# WA

PROFESSIONAL ENGINEERING GRADUATES are expected to work with Complex Engineering Problems

Complex Engineering Problems (Engineer) Requires in-depth knowledge that allows a fundamentalsbased first principles analytical approach

Complex Engineering Activities or Projects



TECHNOLOGIST GRADUATES to work with Broadly Defined Engineering Problems

Broadly Defined Problems (Technologist) Requires knowledge of principles and applied procedures or methodologies

Broadly Defined Engineering Activities or Projects

# DA

TECHNICIAN GRADUATES to work with Well-Defined Engineering Problems

Well-defined Problems (Technician) Can be solved using limited theoretical knowledge, but normally requires extensive practical knowledge

Well-defined Engineering Activities or Projects WA = Requires in-depth knowledge that allows a fundamentals-based first principles analytical approach

- WK1- natural sciences
- WK2 mathematics
- WK3 engineering fundamentals
- WK4 specialist knowledge
- WK5 engineering design
- WK6 engineering practice
- WK7 comprehension
- WK8 research literature

SA = Requires knowledge of principles and applied procedures or methodologies

- SK1- natural sciences
- SK2 mathematics
- SK3 engineering fundamentals
- SK4 specialist knowledge
- SK5 engineering design
- SK6 engineering technologies
- SK7 comprehension
- SK8 technological literature

DA = Can be solved using limited theoretical knowledge, but normally requires extensive practical knowledge

- DK1- natural sciences
- DK2 mathematics
- DK3 engineering fundamentals
- DK4 specialist knowledge
- DK5 engineering design
- DK6 practical engineering knowledge
- DK7 comprehension

|                                    | PROFESSIC<br>ENGINEERING G<br>Complex Eng<br>Problem | ONAL<br>RADUATES -<br>gineering<br>ms | TECHNOL<br>GRADUATES<br>Defined Eng<br>Proble | .OGIST<br>- Broadly<br>gineering<br>ems | TECHNI<br>GRADUATE<br>Defined Eng<br>Proble | CIAN<br>S - Well-<br>gineering<br>ems |
|------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------|
| GRADUATE ATTRIBUTES (Keywords)     | WA-WK's                                              | WP/EA                                 | SA-SK's                                       | BD/EA                                   | DA-DK's                                     | WD/EA                                 |
| 1. Engineering Knowledge           | WK1-WK4                                              | WP                                    | SK1-SK4                                       | BD                                      | DK1-DK4                                     | WD                                    |
| 2. Problem Analysis                | WK1-WK4                                              | WP                                    | SK1-SK4                                       | BD                                      | DK1-DK4                                     | WD                                    |
| 3. Design/Development of Solutions | WK5                                                  | WP                                    | SK5                                           | BD                                      | DK5                                         | WD                                    |
| 4. Investigation                   | WK8                                                  | WP                                    | SK8                                           | BD                                      | -                                           | WD                                    |
| 5. Modern Tool Usage               | WK6                                                  | WP                                    | SK6                                           | BD                                      | DK6                                         | WD                                    |
| 6. The Engineer and Society        | WK7                                                  | WP                                    | SK7                                           | BD                                      | DK7                                         | WD                                    |
| 7. Environment and Sustainability  | WK7                                                  | WP                                    | SK7                                           | BD                                      | DK7                                         | WD                                    |
| 8. Ethics                          | WK7                                                  |                                       | SK7                                           |                                         | DK7                                         |                                       |
| 9. Individual and Team work        |                                                      |                                       |                                               |                                         |                                             |                                       |
| 10. Communication                  |                                                      | EA                                    |                                               | ТА                                      |                                             | NA                                    |
| 11. Project Management and Finance |                                                      |                                       |                                               |                                         |                                             |                                       |
| 12. Life Long Learning             |                                                      |                                       |                                               |                                         |                                             |                                       |

Assessments Provide Adequate Feedback To The Programme To Identify Strengths And Weaknesses For CQI



## **PO ASSESSMENT MODELS**

2

3

- Accumulated model ALL courses contributing to the PO measurements
- Dominating model SELECTED courses contributing to the PO measurements, normally accounted in several CORE courses.
- Culminating model SELECTED FEW usually between 3-5 courses contributing to the PO measurements, normally conducted during the final year of study.

| WΔ | Grad | uate | Attri | butes |
|----|------|------|-------|-------|
|    |      |      |       |       |

## WA Graduate Attributes

| WA1 -<br>Engineering<br>Knowledge | WA1 -<br>Engineering<br>KnowledgeApply mathematics, natural science, engineering<br>fundamentals and engineering specialization to<br>the solution of complex engineering problems<br>(WK1, WK2, WK3, WK4) |                                   | Understand and evaluate the sustainability and impact of professional engineering work in the solution of <b>complex engineering problems. (WK7</b> )                                                 |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WA2 - Problem<br>Analysis         | Identify, formulate, research literature & analyse<br><b>complex engineering problems</b> using first<br>principles of mathematics, natural sciences and<br>engineering sciences (WK1, WK2, WK3, WK4)      | WA8 - Ethics                      | Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (WK7)                                                                              |  |
| WA3 -Design/<br>Development of    | Design solutions for <b>complex engineering</b><br><b>problems</b> and design systems, components or<br>processes with appropriate consideration for                                                       | WA9 - Individual<br>and Team work | Function effectively as an individual, member or<br>leader in diverse teams and in multi-disciplinary<br>settings                                                                                     |  |
| Solutions                         | public health and satety, cultural, societal, and<br>environmental considerations. (WK5)                                                                                                                   | WA10 -                            | Communicate effectively on <b>complex</b><br><b>engineering activities</b> with the engineering<br>community and with society able to<br>comprehend, write, present, give and receive<br>instructions |  |
| WA4 -<br>Investigation            | Conduct investigations of <b>complex problems</b><br>using research-based knowledge and research<br>methods (WK8)                                                                                          | Communication                     |                                                                                                                                                                                                       |  |
| WA5 - Modern<br>Tool Usage        | Create, select and apply modern engineering<br>and IT tools including prediction and modelling to<br><b>complex engineering problems (WK6)</b>                                                             | WA11 - Project<br>Management      | Demonstrate knowledge and understanding of<br>engineering management principles and<br>economic decision-making, apply to own work,                                                                   |  |
| WA4 - The                         | Apply reasoning to assess societal, health, safety,<br>lead and cultural issues and the consequent                                                                                                         | and Finance                       | projects and in multidisciplinary environments                                                                                                                                                        |  |
| Engineer and<br>Society           | responsibilities relevant to professional<br>engineering practice and solutions to <b>complex</b><br><b>engineering problems (WK7)</b>                                                                     | WA12 - Lifelong<br>learning       | Recognize the need, prepare and engage in independent and life-long learning                                                                                                                          |  |

| Mar2019                                                                                                                                                                                                                      | BAETE Graduate Attributes (Section 4.8)                                                                                                                                                                                                                                       | Mar2019BA                                     | ETE Graduate Attributes (Section 4.8)                                                                                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (a) -<br>Engineering<br>Knowledge                                                                                                                                                                                            | Apply knowledge of mathematics, natural science,<br>engineering fundamentals and an engineering<br>specialization as specified in K1 to K4 respectively to the<br>solution of complex engineering problems                                                                    | (g) -<br>Environment<br>and<br>Sustainability | Understand and evaluate the sustainability<br>and impact of professional engineering work in<br>the solution of <b>complex engineering problems</b><br><i>in societal and environmental contexts</i> . <b>(K7)</b>   |  |
| (b) - Problem<br>Analysis                                                                                                                                                                                                    | Identify, formulate, research literature & analyse <b>complex</b><br><b>engineering problems</b> reaching substantiated<br>conclusions using first principles of mathematics, natural                                                                                         | (h) – Ethics                                  | Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. <b>(K7)</b>                                                                                       |  |
| <ul> <li>sciences and engineering sciences (K1, K2, K3, K4)</li> <li>(c) -Design/<br/>Development</li> <li>Design solutions for complex engineering problems and<br/>design systems, components or processes with</li> </ul> |                                                                                                                                                                                                                                                                               | (i) - Individual<br>and Team work             | Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings                                                                                                 |  |
| Development<br>of Solutions                                                                                                                                                                                                  | appropriate consideration for public health and safety,<br>cultural, societal, and environmental considerations (K5)                                                                                                                                                          |                                               | Communicate effectively on <b>complex</b><br><b>engineering activities</b> with the engineering<br>community and with society at large, such as                                                                      |  |
| (d) –<br>Investigation                                                                                                                                                                                                       | Conduct investigations of <b>complex problems</b> using<br>research-based knowledge <b>(K8)</b> and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of information to                                              | (j) -<br>Communication                        | being able to comprehend and write effective<br>reports and design documentation, make<br>effective presentations, and give and receive<br>clear instructions                                                        |  |
| (e) - Modern<br>Tool Usage                                                                                                                                                                                                   | Create, select and apply appropriate techniques,<br>resources, and modern engineering and IT tools including<br>prediction and modelling to complex engineering<br>problems, with an understanding of the limitations (K6)                                                    | (k) - Project<br>Management<br>and Finance    | Demonstrate knowledge and understanding of<br>engineering management principles and<br>economic decision-making and apply these to<br>one's own work, as a member and leader in a<br>team, to manage projects and in |  |
| (f) - The<br>Engineer and<br>Society                                                                                                                                                                                         | Apply reasoning <i>informed by contextual knowledge</i> to<br>assess societal, health, safety, legal and cultural issues<br>and the consequent responsibilities relevant to<br>professional engineering practice and solutions to<br><b>complex engineering problems (K7)</b> | (I) - Lifelong<br>learning                    | Recognize the need for, and have the<br>preparation and ability to engage in<br>independent and life-long learning in the<br>broadest context of technological change.                                               |  |



BAETE Manual 2019, 2<sup>nd</sup> ed, Table 4.1

|                | B                           | AETE MANUAL 2019, 2 <sup>nd</sup> ed. (TABLE 4.1) - KNOWLEDGE PROFILE                                                                                                                                                                                                                                        |
|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K1             | Natural<br>sciences         | A systematic, theory-based understanding of the natural sciences applicable to the discipline.                                                                                                                                                                                                               |
| K2 Mathematics |                             | Conceptually-based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline.                                                                                                                        |
| K3             | Engineering<br>fundamentals | A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.                                                                                                                                                                                                   |
| K4             | Specialist<br>Knowledge     | Engineering specialist knowledge that provides theoretical frameworks and bodies<br>of knowledge for the accepted practice areas in the engineering discipline; much<br>is at the forefront of the discipline.                                                                                               |
| K5             | Engineering<br>Design       | Knowledge that supports engineering design in a practice area.                                                                                                                                                                                                                                               |
| K6             | Engineering<br>Practice     | Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.                                                                                                                                                                                                          |
| <b>K7</b>      | Comprehension               | Comprehension of the role of engineering in society and identified issues in<br>engineering practice in the discipline: ethics and the professional responsibility of<br>an engineer to public safety; the impacts of engineering activity: economic,<br>social, cultural, environmental and sustainability. |
| K8             | Research<br>literature      | Engagement with selected knowledge in the research literature of the discipline.                                                                                                                                                                                                                             |

| WK & PO RELATIONSHIP                                                                                                                         | PO1 - ENGINEERING                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| WK1 Theory-based<br>natural sciences PO1 - ENGINEERING                                                                                       | KNOWLEDGE<br>PO2 - PROBLEMAnalysis of<br>problems &                                                                  |
| WK2 Conceptually-based KNOWLEDGE mathematics                                                                                                 | ANALYSIS<br>PO3 - DESIGN<br>Synthesis of<br>solutions                                                                |
| WK3 Theory-based<br>engineering<br>fundamentals PO2 - PROBLEM                                                                                | PO4 - INVESTIGATION<br>PO5 - MODERN TOOLS                                                                            |
| WK4 Forefront specialist ANALYSIS<br>knowledge for<br>practice                                                                               | PO6 - ENGINEERS &<br>SOCIETY<br>PO7 - ENVIRONMENT &                                                                  |
| WK5 Engineering design PO3 - DESIGN                                                                                                          | PO8 - ETHICS                                                                                                         |
| WK6 Engineering practice (technology) PO5 - MODERN TOOLS                                                                                     | PO9 - TEAMWORK                                                                                                       |
| WK7Comprehension of<br>engineering in<br>societyPO6 - ENGINEERS &<br>SOCIETYBob SocietyPO7 - ENVIRONMENT &<br>SUSTAINABILITY<br>PO8 - ETHICS | PO10 - COMMUNICATION<br>PO11 - PROJECT<br>MANAGEMENT &Required<br>in<br>workplaceFINANCE<br>PO12 - LIFELONGworkplace |
| WK8 Research literature PO4 - INVESTIGATION                                                                                                  | LEARNING                                                                                                             |

|     | WK / Knowled                | ge Profile - CHARACTERISTIC                                                                                                                                                                              | CO            |
|-----|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| WK1 | Natural Sciences            | A systematic, theory-based<br>understanding of the <b>natural sciences</b><br>applicable to the discipline                                                                                               | PRO           |
| WK2 | Mathematics                 | Conceptually-based <b>mathematics</b> ,<br>numerical analysis, statistics and formal<br>aspects of computer and information<br>science to support analysis and<br>modelling applicable to the discipline | chara<br>of W |
| WK3 | Engineering<br>fundamentals | A systematic, theory-based formulation<br>of <b>engineering fundamentals</b> required<br>in the engineering discipline                                                                                   | some<br>WP2   |
| IK4 | Specialist                  | Engineering <b>specialist knowledge</b> that<br>provides theoretical frameworks and<br>bodies of knowledge for the accepted                                                                              | (EAC Mo<br>I  |
| X   | knowledge                   | discipline; much is at the forefront of the discipline.                                                                                                                                                  | POs           |
| WK5 | Engineering<br>design       | Knowledge that supports <b>engineering</b><br><b>design</b> in a practice area                                                                                                                           | PO1 – EK      |
| WK6 | Engineering<br>practice     | Knowledge of <b>engineering practice</b><br>(technology) in the practice areas in<br>the angingering discipling                                                                                          | PO2 – PA      |
|     |                             | Comprehension of the role of<br>engineering in society and identified                                                                                                                                    |               |
| WK7 | Comprehension               | discipline: ethics and the professional<br>responsibility of an engineer to public                                                                                                                       | PO4 – I       |
|     |                             | safety; the impacts of engineering<br>activity: economic, social, cultural,                                                                                                                              | PO5 – MT      |
| ŝ   | Decervek                    | environmental and sustainability<br>Engagement with selected knowledge                                                                                                                                   | PO6 – ES      |
| WK  | literature                  | in the <b>research literature</b> of the discipline                                                                                                                                                      | PO7 – EvS     |

| COM                        | <b>NPLEX</b> |         | WP / Complex Problems - CHARACTERISTIC |                                                                                                                  |                                                                                                                                                                            |  |  |
|----------------------------|--------------|---------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ROBLEMS<br>have            |              |         | WP1                                    | Depth of<br>Knowledge                                                                                            | in-depth engineering knowledge at<br>the level of one or more of WK3,<br>WK4, WK5, WK6 or WK8 which allows<br>a fundamental based, first principles<br>analytical approach |  |  |
| f WP1 and                  |              | WP2     | Conflicting requirement                | wide-ranging or conflicting<br>technical, engineering and other<br>issues                                        |                                                                                                                                                                            |  |  |
| me or all of<br>/P2 to WP7 |              | WP3     | Depth of<br>analysis                   | no obvious solution and require<br>abstract thinking, originality in<br>analysis to formulate suitable<br>models |                                                                                                                                                                            |  |  |
| B-5)                       |              | WP4     | Familiarity of issues                  | infrequently encountered issues                                                                                  |                                                                                                                                                                            |  |  |
| )s<br>- FK                 | WK<br>WK1-   | WP<br>X | WP5                                    | Extent of<br>applicable<br>codes                                                                                 | outside problems encompassed by<br>standards and codes of practice for<br>professional engineering                                                                         |  |  |
| LIX                        | WK4          | ~       | WP6                                    | Extent of stakeholder                                                                                            | diverse groups of stakeholders with<br>widely varving needs                                                                                                                |  |  |
| – PA                       | WK1-<br>WK4  | X       | VP7                                    | Interdepen-                                                                                                      | high level problems including many                                                                                                                                         |  |  |
| 3 –<br>ign                 | WK5          | x       | -                                      | Gence                                                                                                            |                                                                                                                                                                            |  |  |
| -1                         | WK8          | Х       |                                        |                                                                                                                  |                                                                                                                                                                            |  |  |
| – MT                       | WK6          | X       |                                        | 7 D/                                                                                                             | $\Delta \sim M/D$                                                                                                                                                          |  |  |

Χ

Χ

WK7

WK7

# 7 POs ~ WP



Kul Sharif Mosque (White Mosque) Kazan Kremlin, Russia, 16th century (rebuilt 1996-2005)

# Group Discussion

- 1. Can we address all WK1- WK8 in 1 course?
- 2. Provide TWO (2) examples on how to assess WK5 - WK8.





| KEYWORD                                                               | BAETE MANUAL 2019, 2 <sup>nd</sup> ed. (TABLE 4.2) – COMPLEX<br>ENGINEERING PROBLEMS (P1-P7) CHARACTERISTICS                                                                                  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth of knowledge<br>required                                        | P1 cannot be resolved without in-depth engineering knowledge at the<br>level of one or more of K3, K4, K5, K6 or K8 which allows a fundamental<br>based, first principles analytical approach |
| Range of conflicting requirements                                     | <b>P2</b> involve <b>wide-ranging or conflicting</b> technical, engineering and other issues                                                                                                  |
| Depth of analysis<br>required                                         | <b>P3</b> have <b>no obvious solution</b> and require abstract thinking, originality in analysis to formulate suitable                                                                        |
| Familiarity of issues                                                 | P4 involve infrequently encountered issues                                                                                                                                                    |
| Extent of applicable codes                                            | P5 are outside problems encompassed by standards and codes of practice for professional engineering                                                                                           |
| Extent of stakeholder<br>involvement &<br>conflicting<br>requirements | P6 diverse groups of stakeholders with widely varying needs                                                                                                                                   |
| Interdependence                                                       | P7 high level problems including many component parts or sub-problems                                                                                                                         |

Cannot be resolved without in-depth engineering knowledge at the level of one Depth of WP1 24 knowledge or more of WK3, WK4, WK5, WK6 or WK8 required which allows a fundamentals-based, first principles analytical approach. 1 A V **WK8 Research Literature** WK6 **MUST Engineering Practice** WK5 **Engineering Design WK4**, WK3 Specialist Knowledge, **Engineering Fundamentals** 

In-Depth Knowledge = knowledge gained from courses/ learning activities beyond the *introductory* instructional level

WP1

25

1<sup>st</sup> Principles = the fundamental concepts/ assumptions on which a theory, system, or method is based.

In engineering, 1<sup>st</sup> Principles start directly at the level of established laws of chemistry, physics and mathematics. The required theoretical knowledge to solve problem/develop the design.

#### For example,

- Apply detailed theoretical knowledge working from 1st Principles to establish a workable mathematical or theoretical model
- Apply some standard formulae or theoretical models mixed by exposure to similar problems

#### **Range of** Involve wide-ranging or conflicting WP2 conflicting 26 technical, engineering and other issues. requirements What constraints What are placed to conflicting How the constraints were identified resolve the demands in they may have been part of the problem? the developing brief, a design? they may have only become • apparent once they started

- addressing the problem, or
- the brief may have implied or only referenced to them loosely.

# Depth of<br/>analysisHave no obvious solution and require<br/>abstract thinking, originality in analysis to<br/>formulate suitable models.

What are guidance/ constraints given to develop the solution/ design?

**Multiple** 

solutions

WP3

27

Approach to the development of solution/design

- How was the problem defined?
- Students may have been given clear boundaries and specific details of what they had to do, or they may have had to define some or all of the boundaries to the problem themselves and work with limited information to decide how the work should be carried out
- The problem may have been the one that they regularly encountered but with slight case-specific variations.



To what extent is this problem routinely encountered and resolved using wellunderstood practices?

### The problem is a:

- New problem not previously or only rarely encountered.
- Familiar problem with either:
  - Clearly defined methods and/or practices used to resolve.
  - Some (or many) unique issues that made resolution difficulty level increases.

Extent of<br/>applicable<br/>codesAre outside problems encompassed by<br/>standards and codes of practice for<br/>professional engineering

How to analyse/ investigate or develop a solution/ design by either:

How do existing standards, codes dictate the solution?

WP5

29

• Applying engineering skill to address some parts of the problem that were not clearly prescribed by standards, codes or practices.

 Having to develop own criteria (in a manner consistent with good engineering practice) because the problem was so ill-defined that it did not fall within any specific standards, codes or codified engineering practices.

#### 30

WP6Extent of stakeholder<br/>involvement and level<br/>of conflicting<br/>requirementsInvol<br/>stake<br/>need

Involve diverse groups of stakeholders with widely varying needs.

Are there conflicting requirements? If so, how did you interact with affected stakeholders to resolve the conflicts?

- Who are your stakeholders?
- What are their interests or requirements ?
- The extent these interests or requirements conflicted and/or placed constraints on the problem
- How do you manage your stakeholders to resolve conflicts, meet their requirements or reach satisfactory compromises ?

How do stakeholder interests and requirements impact on the problem?



WP7InterdependenceAre high level problems including<br/>many component parts or sub-<br/>problems.

The problem is able to be broken down into smaller components or sub-problems, not physically but mathematically

#### CHECKLIST

- PROGRAMME OUTCOMES MEASURED ARE PO1 – PO7
- WP1 EVIDENT IN ALL PO1 – PO7

PO

PO1

PO2

PO3

PO4

PO5

PO6

PO7

ΕK

PA

DES

IGN

MT

ES

EvS

- CHECK FOR WP2 – WP7
- CHECK FOR WK3 – WK8
- REVIEW THE QUESTIONS CRITICALLY
- IDENTIFY DIFFICULTY LEVELS AND COMPLEXITY CHARACTERIS-TICS
   REPORT YOUR

**FINDINGS** 

## INTERNAL AUDIT AND MODERATION

|   |            |                                 |   | WP  |                            | X |
|---|------------|---------------------------------|---|-----|----------------------------|---|
|   | WK         |                                 | X | WP1 | Depth of<br>Knowledge      |   |
| ( | WK1<br>WK2 | Natural Sciences<br>Mathematics |   | WP2 | Conflicting<br>requirement |   |
|   | WK3        | Engineering                     |   | WP3 | Depth of analysis          |   |
|   | WK4        | Specialist                      |   | WP4 | Familiarity of issues      |   |
|   | WK5        | Engineering<br>design           |   | WP5 | Extent of applicable codes |   |
|   | WK6        | Engineering<br>practice         |   | WP6 | Extent of stakeholder      |   |
|   | WK7        | Comprehension                   |   | WP7 | Interdependence            |   |
|   | WK8        | Research<br>literature          |   |     |                            |   |

# A simple illustration on how design constraints can be applied

33



## **STEP 1 - DEFINE THE PROBLEM**

#### PROBLEM DEFINITION STATEMENT: A BETTER MOUSETRAP

Certain rodents such as the common mouse are carriers and transmitters of an often fatal virus, the hantavirus. Conventional mousetraps expose people to this virus as they handle the trap and dispose of the mouse. Design a mousetrap that allows a person to trap and dispose of a mouse without being exposed to any bacterial or viral agents being carried on the mouse.

#### Criteria for Success of a Better Mousetrap

- The design must be low cost.
- The design should be safe, particularly with small children.
- The design should not be detrimental to the environment.
- The design should be aesthetically pleasing.
- The design should be simple to operate, with minimum human effort.
- The design must be disposable. (You don't reuse the trap.)
- The design should not cause undue pain and suffering for the mouse.

WP2 Range of conflicting requirements

# STEP 2 – GATHER INFORMATION

(Search for Information & Record the Results)

- WP2Range of conflicting<br/>requirementsWP4Familiarity of issuesWP4Extent of stakeholder<br/>involvement and level of<br/>conflicting requirements
- What are the existing solutions to the problem?
- What is wrong with the way the problem is currently being solved?
- What is right with the way the problem is currently being solved?
- What companies manufacture the existing solution to the problem?
- What are the economic factors governing the solution?
- How much will people pay for a solution to the problem?
- What other factors are important to the problem solution (such as safety, aesthetics, environment issues, and colour)?

Sources of information:<br/>Engineer's logbook:e-book, journal, technical handbook<br/>Record the results
#### **STEP 3 - GENERATE MULTIPLE SOLUTIONS**

#### WP3 Depth of analysis

- The importance of teamwork creative solutions to technical problems are not solved by individuals but by a team of people from different technical background bringing different perspective to the problem
- Strategies for generating creative solutions –
   brainstorming is a technique of generating many ideas
   & sketch-storming is the visual creation and recording of ideas

## **STEP 4 – ANALYSE AND SELECT A SOLUTION**

- Analysis of design solutions design problem is unique & requires different types of analysis
  - Functional analysis
  - **Ergonomics**
  - Product safety and liability
  - Economic and market analysis
  - Strength, mechanical, thermal analysis
- Decision process



#### **STEP 5 - TEST AND IMPLEMENT SOLUTION**

#### Prototyping

 Documenting the solution – engineering drawing, written communication, oral communication, scheduling and planning

| WP1 | Depth of knowledge         |
|-----|----------------------------|
| WP5 | Extent of applicable codes |



## 2 – For Discussion

## SAFETY HELMET – is this a complex problem?

41

Carrying child pillion riders on motorcycles has become a norm in Malaysia. Usually the parents ferry their children to school, take them for leisure rides and many take long trip journey. In Malaysia, the motorcycle fatal crashes warrant a major concern.

The statistical data on road crashes involving motorcyclist from 2005-2007 in Malaysia shows that there were 25% of children below 16 years old rode as pillion riders that were involved in road crashes (MROADS, 2011). In 2008, according to the Malaysian Institute of Road Safety Research (MIROS, 2011), road crashes in Malaysia have killed 410 lives of children aged between one and 15 years old and another 2,797 children suffered serious and light injuries.

Affordable safety helmets for the child riders are limited. The minimum size available in the market here is 57cm in diameter, which will not fit comfortably and suitably for children of small and medium body built, who are younger than 7 years old. This results in riders riding and ignoring the safety, exposing these pillion riders to probable danger of serious head injury.

Students are now expected to design and develop an engineering solution (product) to protect the child rider's head. It is must be affordable.

#### A must-have characteristic

| WP1       Depth of knowledge required       Cannot be resolved without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of one or method without in-depth of knowledge at the level of knowledge | Cannot be resolved without in-depth engineering<br>knowledge <b>at the level of one or more of WK3, WK4,</b><br><b>WK5, WK6 or WK8</b> which allows a fundamentals-<br>based, first principles analytical approach. |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| A systematic<br>of engineeri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c theory-based formulation<br>ng fundamentals required                                                                                                                                                              |  |  |  |  |  |
| WK1 Theory-based natural sciences in the MECH, discipline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in the MECHANICAL engineering discipline                                                                                                                                                                            |  |  |  |  |  |
| WK2 Conceptually-based mathematics • Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | specialist knowledge that                                                                                                                                                                                           |  |  |  |  |  |
| WK3 Theory-based engineering fundamentals provides the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oretical frameworks and                                                                                                                                                                                             |  |  |  |  |  |
| WK4 Forefront specialist knowledge for practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eas in the Mechanical                                                                                                                                                                                               |  |  |  |  |  |
| WK5 Engineering design • This can be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | discipline.<br>obtained from courses that                                                                                                                                                                           |  |  |  |  |  |
| WK6 Engineering practice (technology) define Mech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nanical Engineering.                                                                                                                                                                                                |  |  |  |  |  |
| WK7 Comprehension of engineering in society                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | that supports engineering                                                                                                                                                                                           |  |  |  |  |  |
| WK8 Research literature • Design meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nodologies, design codes,                                                                                                                                                                                           |  |  |  |  |  |

#### A must-have characteristic

| 43  | WP1                                   | Depth of<br>knowledge<br>required | Cannot be resolved without in-depth engineering<br>knowledge <b>at the level of one or more of WK3, WK4,</b><br><b>WK5, WK6 or WK8</b> which allows a fundamentals-<br>based, first principles analytical approach. |                                                                  |  |  |  |
|-----|---------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
|     |                                       |                                   |                                                                                                                                                                                                                     |                                                                  |  |  |  |
| WK1 | Theory-bo                             | ased natural <mark>scie</mark>    | nces                                                                                                                                                                                                                |                                                                  |  |  |  |
| WK2 | Conceptu                              | ually-based math                  | nematics                                                                                                                                                                                                            |                                                                  |  |  |  |
| WK3 | Theory-based engineering fundamentals |                                   |                                                                                                                                                                                                                     | Simulation software and equipment                                |  |  |  |
| WK4 | Forefront                             | <mark>specialist</mark> knowle    | edge for practice                                                                                                                                                                                                   | for me meenamear alsophile                                       |  |  |  |
| WK5 | Engineerii                            | ng <b>design</b>                  |                                                                                                                                                                                                                     |                                                                  |  |  |  |
| WK6 | Engineeri                             | ng <b>practice</b> (tecl          | nnology)                                                                                                                                                                                                            | Engagement with selected<br>knowledge in the research literature |  |  |  |
| WK7 | Compreh                               | ension of engine                  | ering in society                                                                                                                                                                                                    | of the Mechanical discipline                                     |  |  |  |
| WK8 | Research                              | literature                        |                                                                                                                                                                                                                     |                                                                  |  |  |  |

# How does the illustrated example fulfill the following characteristics?

| WP1 | Depth of knowledge required                                                   |  |
|-----|-------------------------------------------------------------------------------|--|
| WP2 | Range of conflicting requirements                                             |  |
| WP3 | Depth of analysis required                                                    |  |
| WP4 | Familiarity of issues                                                         |  |
| WP5 | Extent of applicable codes                                                    |  |
| WP6 | Extent of stakeholder involvement<br>and level of conflicting<br>requirements |  |
| WP7 | Interdependence                                                               |  |



## WA10: **COMMUNICATION** ~ COMPLEX ENGINEERING ACTIVITIES

COMMUNICATE effectively on complex engineering activities with the engineering community and with society, able to comprehend, write, present, give and receive instructions



## EA5/A5) U EERIN Z **IIES** EA1 COMPLEX ALL **O** S some

EA5/A5 Familiarity

**EA4/A4** 

Consequences

to society & the

environment

EA1/A1 Range of resources

**EA2/A2** 

Level of interactions

EA3/A3

Innovation

00 AN BE **ISTRI** TER REASONABLY

| KEYWORD                                           | BAETE MANUAL 2019, 2 <sup>nd</sup> ed. (TABLE 4.3) – COMPLEX<br>ENGINEERING ACTIVITIES (A1-A5) CHARACTERISTICS                                                    |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range of resources                                | <b>A1</b> involve the use of <b>diverse resources</b> (and for this purpose resources includes people, money, equipment, materials, information and technologies) |
| Level of interactions                             | A2 require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues                |
| Innovation                                        | A3 involve creative use of engineering principles and research-based knowledge in novel ways                                                                      |
| Consequences to<br>society and the<br>environment | A4 have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation                                                 |
| Familiarity of issues                             | <b>A5</b> can extend <b>beyond</b> previous experiences by applying principles-based approaches                                                                   |

| 49                                        | <b>EA1</b>                                  | Range of resources                                                  | Invol<br>for th<br>mon<br>and | ve the use of diverse resources (and<br>his purpose resources includes people,<br>ey, equipment, materials, information<br>technologies).                                                     |
|-------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v<br>resc<br>w<br>avai<br>hel             | Vhat<br>ources<br>vere<br>lable to<br>p you | Negotiate<br>adequate<br>resources e<br>personnel                   | ġ                             | Develop plans (including budgets) to<br>schedule availability of resources for<br>allocation when required to meet<br>project timelines and financial<br>commitments.                         |
| carry out thi<br>engineering<br>activity? |                                             | funding,<br>equipment<br>authorisatio<br>to undertak<br>work materi | t,<br>ns<br>ce<br>als         | Report work progress against<br>schedule – work-flow plans, budgets,<br>overall project performance<br>objectives and provide projections<br>on work completion to target times<br>and budget |

#### 50

**EA2** Level of interactions

Require resolution of significant problems arising from interactions between wide ranging or conflicting technical, engineering or other issues.

What are the engineering issues or other issues that could impact on engineering matters related to the project the expected outset of the project?

What unforeseen engineering issues arose during the execution of the project ? Prior to commencing the work to ensure all the engineering issues are resolved or scheduled to be resolved to meet project plan targets, i.e., identify the potential risks with the respective proposed solution.

| 51 | EA3                                | Innovation                          |   | Involve creative use of engineering principles and research-based knowledge in novel ways                                                         |  |  |  |
|----|------------------------------------|-------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    |                                    |                                     |   |                                                                                                                                                   |  |  |  |
|    | What<br>techni<br>mater<br>process | new<br>iques,<br>ials or<br>ses can |   | How do the proposed approach<br>improve the efficiency, effectiveness or<br>quality of work? Such as ROI, quality,<br>economy and sustainability. |  |  |  |
|    | be utili                           | ised in                             |   |                                                                                                                                                   |  |  |  |
|    | the pr                             | oject,                              |   |                                                                                                                                                   |  |  |  |
|    | feasibility study                  |                                     |   |                                                                                                                                                   |  |  |  |
|    | (technical & What economy),        |                                     |   | hat are the creative solutions and out<br>of the box thought processes                                                                            |  |  |  |
|    |                                    |                                     |   |                                                                                                                                                   |  |  |  |
| N  | litera                             | iture                               | U | ndertaken/happened to promote                                                                                                                     |  |  |  |

review ?

innovation ?



52

Have significant consequences in a range of contexts, characterised by difficulty of prediction and mitigation.

What are the impacts of the engineering solution on the society and environment?

Who is affected and how?

| 53 | EA5 Familiarity         |                      | niliarity | Can extend beyond previous experiences<br>by applying principles-based<br>approaches.     |
|----|-------------------------|----------------------|-----------|-------------------------------------------------------------------------------------------|
|    | To w<br>extent<br>previ | hat<br>is the<br>ous | The<br>a. | experience is a:<br>New experience which is not previously or<br>only rarely encountered. |

experiences

routinely

encountered

and resolved

using well-

understood

practices?

- **b.** Familiar experience with either:
  - Clearly defined approaches and/or practices used to resolve.
  - Some (or many) unique issues that made communication difficulty level increases.

## INTERNAL AUDIT AND MODERATION

#### CHECKLIST

- PROGRAMME OUTCOME MEASURED IS WA10
- CHECK FOR EA1-EA5
- CHECK THE WRITTEN
   EVIDENCES AGAINST THE RUBRICS
- CHECK THE RUBRICS AGAINST THE EXPECTED ORAL PRESENTATIONS
- IDENTIFY THE COMPLEX ENGINEERING ACTIVITIES CHARACTERISTICS
- REPORT YOUR FINDING

| PO        |     | X | Α   |                                                   | X |
|-----------|-----|---|-----|---------------------------------------------------|---|
| WA10 COMM |     |   | EA1 | Range of resources                                |   |
|           |     |   | EA2 | Level of interactions                             |   |
|           |     |   | EA3 | Innovation                                        |   |
| RUBRIC    |     | С | EA4 | Consequences<br>to society and<br>the environment |   |
|           |     |   | EA5 | Familiarity                                       |   |
| DE        | SIG | N |     |                                                   |   |



## 3 – For Discussion

## **STEP 1 - DEFINE THE PROBLEM**



#### **Problem Statement**

- It was observed that a number of unauthorised vehicles enter the campus without valid car stickers. The security guards check for the unauthorised vehicles for valid stickers at the entrance throughout the day which is a potential health and safety hazard at workplace. At times, the entrance to the campus experiences high volume of traffic. Design an access system to address the above issues with minimum cost implication to the university.
  Performance Criteria
- . The design must be low cost, utilising existing infrastructures whenever possible
- 2. The design must be able to reduce the risk of health and safety hazard to the security guards
- 3. The design must not build up the traffic at the entrance of the campus

## **STEP 2 – GATHER INFORMATION**

(Search for Information & Record the Results)



- The team of students gathered information on the existing solutions to the problem which include touch card and wide range RFID access system, number plate recognition system, and others. They interviewed the security guards, the Security Department which issues the car stickers and few of the manufacturers of various access systems.
- From the interview with the Security Department, the team asked the permission to access the existing CCTV system if needed.
- The information gathered at this stage also allowed the team to chart the project plan (Gantt Chart), identify risks and resources needed for the project, and so on.

## **STEP 3 - GENERATE MULTIPLE SOLUTIONS**

- The team discussed the various types of access systems, the technical and non-technical requirements.
- The touch card access system was found to be taking more time per car entry while the wide range RFID access system required lesser time. The team also considered the use of Number Plate Recognition system which requires the same amount time or less as per the wide range RFID access system. This consideration is an important performance criterion (no. 3).

EAS

The team also worked out the pricing of the abovementioned systems as part of the requirement of performance criterion (no. 2). The number plate recognition system was found to be cheapest among the various solutions as it could utilise the existing CCTV system though required more extensive programming.

## **STEP 4 – ANALYSE AND SELECT A SOLUTION**

Mbś

The team selects the most suitable solution based on the following analyses:

#### 1. Functionality analysis

Both wide range RFID access system and number plate recognition system need the least time per car entry thus would minimise the traffic at the entry to the campus.

#### 2. Economic analysis

Touch card and wide range RFID would require a car reader to be installed and issuance of access cards while number plate recognition system could utilise the existing CCTV system.

#### 3. Health and safety

All mentioned solutions would improve the health and safety hazard of the workplace.

Based on the above analyses, the team decided on number plate recognition system which requires the application of engineering knowledge of digital signal/image processing, programming, embedded system, instrumentation, storage and matching of information in the database, among others.

#### **STEP 5 - TEST AND IMPLEMENT SOLUTION**

This step includes prototyping and documenting the solution such as engineering drawing, written communication, scheduling and planning, etc. and presentation to the faculty members or public.

WA10 on Communication – Complex Engineering Activities



# How does the illustrated example fulfill the following characteristics?

62

| EA1 | Range of resources                                   | Involve the use of diverse resources<br>(and for this purpose resources includes<br>people, money, equipment, materials,<br>information and technologies). |  |
|-----|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EA2 | Level of<br>interactions                             | Require resolution of significant<br>problems arising from interactions<br>between wide ranging or conflicting<br>technical, engineering or other issues.  |  |
| EA3 | Innovation                                           | Involve creative use of engineering principles and research-based knowledge in novel.                                                                      |  |
| EA4 | Consequences<br>to society and<br>the<br>environment | Have significant consequences in a range of contexts, characterised by difficulty of prediction and mitigation.                                            |  |
| EA5 | Familiarity                                          | Can extend beyond previous<br>experiences by applying principles-<br>based approaches.                                                                     |  |

Kul Sharif Mosque (White Mosque) Kazan Kremlin, Russia, 16th century (rebuilt 1996-2005)

## Group Discussion

- 1. Can we address all WP1-WP7 in 1 course?
- 2. Provide an example on how to assess each of the WP1-WP7 and EA1-EA5?

## COURSES FOR IMPLEMENTING COMPLEX ENGINEERING PROBLEMS

#### Industry-based Integrated Design Project

- Employed Problem-Based Learning teaching method
- Provides students opportunity to apply their skills and knowledge toward developing a robust understanding of what it means to be an engineer
- Supports students to make transition from classroom-based activities to professional communities of practices
- Working with a supervisor from the industry in a type of collaboration, students are challenged with a real-world problem.

#### Final Year Project

- Commonly known as research project
- Best means of introducing an investigative research-oriented approach to engineering studies and sourcing of knowledge externally from the real-world
- Involves review of open research literature which challenges students to interpret new information, perform critical analysis, form personal opinions and judgements, and learn independently
- Open research literature is one of the assessments that employs constructivist technique.

## COURSES FOR IMPLEMENTING COMPLEX ENGINEERING PROBLEMS

#### Industry Training or Work-based Learning

- Provides opportunities for students to engage in experiential education, integrating theory with work experience
- Provides students with knowledge base and skills to help them translate isolated and abstract concepts into practical applications of that knowledge.

#### Laboratory experiences

- Important elements in engineering education, bridging the gaps between engineering theories and real practices through cultivation of hands-on skills
- Open-ended approach the problem may have multiple solutions and there is no obvious solution. Being a subset of problem-based learning, open-ended laboratory focuses on student's ability to design experiments, identify the variables or results or information to be collected and identify the appropriate instruments for the assigned problem. This approach suits the need to produce engineering graduates that are selfdirected, reflective, demonstrate ability to integrate knowledge, think critically, practice life-long learning and work collaborative with others.

## USE OF FINAL EXAMINATION FOR COMPLEX PROBLEM SOLVING

- Many believe that examination is not suitable to assess complex engineering problem solving skills and it must involve activities, especially integrated activities and discussions, such as case study (Phang et al., 2018).
- Example of final examination question (Phang et al., 2018):

66

Sungai Melana is a small river flowing through several residential areas in Skudai, Johor Bahru. You are a consultant appointed to propose a river restoration action plan for a part of Sungai Melana, beginning from the upstream at Taman Teratai until the midstream at Taman Universiti.

Your/proposal should include action plans to accomplish the following objectives:

Improving the water quality of Sungai Melan to Class II and III
 Prevention of direct solid waste discharge into the river system
 Creating suitable habitats for the propagation aquatic life
 Adding property and aesthetic value to residents living along the river

Your answers should be written to address each of these items separately.

# Sharing Further Info

### RUBRICS DESIGN – DESCRIPTORS FOR WP/EA CHARACTERISTICS

The existing rubrics practiced by the institutions of higher learning in assessing programme outcomes can be enhanced by the following suggested descriptors to highlight the significance of complex engineering problems or complex engineering activities.

Depending on the nature of the problems or activities, some of these descriptors could be used.

| WP  | CHAR                                         | Rubrics Design KNOWLEDGE                                                                             |         | 1                                        | 2                                                                                     | 3                                                                              | 4 | 5  |
|-----|----------------------------------------------|------------------------------------------------------------------------------------------------------|---------|------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---|----|
| WP1 | Depth of<br>Knowledge<br>WK3 - EF            | Analyse the problem using specified knowledge profile                                                |         | Use 2 WKs but do<br>not elaborate        | Use 2 WKs with<br>acceptable<br>elaboration                                           | 3                                                                              |   |    |
|     | WK4 - SK<br>WK5 - ED<br>WK6 - EP<br>WK8 – RL | Evaluate the problem under such circumstance towards providing an effective solution                 |         | Evaluate 1<br>circumstance<br>only       | Evaluate 2<br>circumstances with<br>acceptable<br>justification                       |                                                                                | 4 | >4 |
| WP2 | Conflicting                                  | Compare the conflicting technical,<br>engineering and other issues arising to<br>solve the problem   | age     | Only 1 issue                             | Compare 2 issues<br>with acceptable<br>discussion                                     | Compare 2 issues<br>with acceptable<br>discussion                              | 3 | >3 |
|     | ments                                        | Assess the conflicting requirements and provide a satisfactory proposal towards solving the problem. | /eighta | Assess but no<br>proposal                | Assess with 1<br>proposal                                                             | Assess with 2 proposal                                                         |   |    |
|     |                                              | Develop the formulae/procedures to solve the problem using suitable models.                          | 5       | Conceptualise 1<br>formula used          | Conceptualise 1<br>formula used<br>but do not<br>elaborate the<br>model               | Develop 1<br>formula used and<br>elaborate the<br>model                        |   |    |
| WP3 | Depth of<br>analysis                         | Justify creativity towards the achievement of the formulae/procedures                                |         | Justify the 1<br>creative<br>development | Justify the 1<br>creative<br>development used<br>but do not<br>elaborate the<br>model | Justify the 1<br>creative<br>development<br>used and<br>elaborate the<br>model | 2 | 3  |

| WP      | CHAR                | Rubrics Design KNOWLEDGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1                                                | 2                                                       | 3                                                           | 4 | 5  |
|---------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---|----|
|         | Familiarity         | Differentiate the infrequently encountered issues in problem solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Compare the basis.                               | Compare and<br>differentiate 2<br>issues                | Differentiate 2 issues and propose                          |   |    |
| WP4     | of issues '         | Select formulae/procedures to resolve the infrequently encountered issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Select an<br>approach to<br>resolve.             | Select 2<br>approaches to<br>resolve                    | Select 2 approaches to resolve and justify                  | 3 | >3 |
|         | Extent of           | Develop solution using standards and<br>codes of practice for professional<br>engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Use at least 1                                   | Use at least 2                                          | Use at least 2 and<br>include practising<br>guide           |   |    |
| WP5     | applicable<br>codes | Justify professional engineering<br>experiences to resolve the problem<br>solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age   | Justify using at<br>least 1<br>experience        | Justify using at<br>least 2<br>experiences              | Justify using 2<br>experiences and<br>select at least 1     | 3 | >3 |
| F       | Extent of           | Differentiate the diverse groups of stakeholders with widely varying needs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eight | Compare the basis.                               | Compare and<br>differentiate 2<br>groups                | Differentiate 2<br>groups and propose<br>1 solution         |   |    |
| WP6     | stake-<br>holder    | encountered issues in problem solvingDass.issuesand proposeaSelect formulae/procedures to resolve the<br>infrequently encountered issuesSelect an<br>approach to<br>resolve.Select 2<br>approach to<br> | >3    |                                                  |                                                         |                                                             |   |    |
| WP7     | Interde-            | Analyse high level problems including many component parts or sub-problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | Use 2 sub<br>problems but<br>do not<br>elaborate | Use 2 sub<br>problems with<br>acceptable<br>elaboration | Use 2 sub problems<br>and differentiate                     | 3 | >3 |
| / / / / | pendence            | Propose problem broken down into smaller components or sub-problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Propose 1<br>component<br>only                   | Propose 2<br>components                                 | Propose 2<br>components with<br>acceptable<br>justification | Ū | Ĵ  |

| EA  | CHAR                          | Rubrics Design                                                                                                                                                |         | 1                                                    | 2                                                                                               | 3                                                                                           | 4 | 5  |
|-----|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---|----|
| EA1 | Range of<br>resources         | Elaborate functions and association with<br>different resources such as people,<br>money, equipment, materials,<br>information and technologies               |         | Associate with 1<br>resource but do<br>not elaborate | Associate with 1<br>resource with<br>acceptable<br>elaboration                                  | 2                                                                                           | 3 | >3 |
|     |                               | in fulfilling the requirements of a successful design project.                                                                                                |         | resource only                                        | Justify on Tresource<br>with acceptable<br>justification                                        |                                                                                             |   |    |
| EA2 | Level of<br>interac-<br>tions | Adapt significant problems arising from<br>interactions between wide-ranging or<br>conflicting technical, engineering or<br>other issues                      | age     | Associate with 1<br>level of<br>interaction          | Adapt 1 level of interaction                                                                    | 2                                                                                           | 3 | >3 |
|     |                               | Justify the solutions achieved arising from<br>the level of interactions involving wide-<br>ranging or conflicting technical,<br>engineering or other issues. | Veighta | Discuss on the 1<br>level of<br>interaction          | Justify the 1 level of interaction                                                              | Z                                                                                           |   |    |
| EA3 | Innova-<br>tion               | Advocate creative use of engineering<br>principles and research-based<br>knowledge in novel ways                                                              | >       | Conceptualise 1<br>creative principle<br>used        | Conceptualise 1<br>creative principle<br>used<br>but do not elaborate<br>the novelty            | Advocate 1<br>creative<br>principle used<br>and elaborate<br>the novelty                    |   |    |
|     |                               | Justify creativity towards the achievement of the novelty (eg. patent/copyright/etc)                                                                          |         | Justify the 1<br>creative principle<br>used          | Justify the 1 creative<br>principle used<br>but do not elaborate<br>research based<br>knowledge | Justify the 1<br>creative<br>principle used<br>and elaborate<br>research based<br>knowledge | 2 | 3  |

| EA  | Characteristics                | Rubrics Design : WRITING                                                                                                     |           | 1                                                              | 2                                                                                                  | 3 | 4 | 5  |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---|---|----|
| EA4 | Consequences to                | Organise significant consequences<br>in a range of contexts,<br>characterized by difficulty of<br>prediction and mitigation  | Weightage | Organise and<br>characterise 1<br>context                      | Organise and<br>characterise 1<br>difficult context                                                | 2 | 3 | >3 |
|     | society and the<br>environment | Exemplify significant consequences<br>in a range of contexts,<br>characterized by difficulty of<br>prediction and mitigation |           | Justify the<br>consequences                                    | Justify the<br>difficulty and<br>consequences                                                      |   |   |    |
| EA5 | Familiarity of issues          | Organise resolution beyond previous<br>experiences routinely encountered.                                                    |           | Organise by<br>applying 1<br>principles-<br>based<br>approach. | Organise by<br>applying 1<br>principles-<br>based<br>approach<br>beyond<br>previous<br>experience. | 2 | 3 | >3 |
|     |                                | Exemplify experiences to resolve the engineering activities                                                                  |           | approach<br>during<br>resolution                               | approach<br>during<br>resolution<br>beyond<br>previous<br>experience                               |   |   |    |
## **OBE CURRICULA**

73







## 76 REFERENCES

- Accreditation Manual 2019, 2<sup>nd</sup> edition, Board of Accreditation for Engineering and Technical Education, Institution of Engineers Bangladesh
- EAC Manual 2017, Board of Engineers Malaysia
- CEAB (2015). A guide to outcomes-based criteria (Draft). Ottawa, Ontario: Canadian Engineering Accreditation Board.
- IEA Graduate Attributes and Professional Competency Profiles, Version 3: 21 June 2013
- 25 Years of the Washington Accord, International Engineering Alliance, June 2014
- M. Young and J. Muller (2014), Knowledge, Expertise and the Professions, Florence Production Ltd, Stoodleigh, Devon, UK
- Phang, Fatin & Anuar, Aznah & Abdul-Aziz, Azmahani & Mohd-Yusof, Khairiyah & Helmi, Syed & Ahmad, Yusof. (2018). Perception of Complex Engineering Problem Solving Among Engineering Educators. 215-224. 10.1007/978-3-319-60937-9\_17.
- Requirements for Accreditation of Engineering Education Programmes, Engineers New Zealand, Version 3.1, 2017

## POINTS FOR CLARIFICATIONS

- sitihawabthamzah@gmail.com
- liewcp@tarc.edu.my

